
Applying machine learning classifiers to dynamic
Android malware detection at scale

Brandon Amos, Hamilton Turner, Jules White

Dept. of Electrical and Computer Engineering, Virginia Tech

Blacksburg, Virginia, USA

Email:{bdamos, hamiltont, julesw}@vt.edu

Abstract—The widespread adoption and contextually sensitive
nature of smartphone devices has increased concerns over smart-
phone malware. Machine learning classifiers are a current method
for detecting malicious applications on smartphone systems. This
paper presents the evaluation of a number of existing classifiers,
using a dataset containing thousands of real (i.e. not synthetic)
applications. We also present our STREAM framework, which
was developed to enable rapid large-scale validation of mobile
malware machine learning classifiers.

Keywords—anomaly detection, machine learning, data collec-
tion, smartphones, mobile computing, IDS

I. INTRODUCTION

Emerging Trends and Challenges. The International Data
Corporation [1] states that Android’s market share has grown
to 136 million units and 75% of the market share in 3Q
2012. Bloomberg Businessweek [2] reports there are 700,000
applications available on Google Play as of October 29, 2012.
While most of these applications are benign, TrendLabs reports
in their 3Q 2012 security roundup that the top ten installed
malicious Android applications had 71,520 installations total.

An important concern on the growing Android platform is
malware detection. Malware detection techniques on the An-
droid platform are similar to techniques used on any platform.
Detection is fundamentally broken into static analysis, by
analyzing a compiled file; dynamic analysis, by analyzing the
runtime behavior, such as battery, memory, and network uti-
lization of the device; or hybrid analysis, by combining static
and dynamic techniques [3]. Static analysis is advantageous on
memory-limited Android devices because the malware is not
executed, only analyzed. However, dynamic analysis provides
additional protection, particularly against polymorphic mal-
ware that change form during execution. To use the advantages
from both static and dynamic analysis, desktop vendors such
as AVG [4] employ hybrid techniques. Our work focuses
specifically on profiling applications to obtain information used
in dynamic analysis.

Behavior of both malicious and benign applications are
profiled with a set of feature vectors, which are snapshots
of system state information, such as memory utilization and
power consumption. Machine learning algorithms are trained
with known feature vectors to attempt to predict the clas-
sification of unknown feature vectors. Due to the range of
hardware configurations a very large number of feature vectors
from a diverse set of hardware are needed to effectively

train machine learning algorithms. Future work will explore
machine-invariant hardware metrics.

Gap in Research ⇒ Large-scale studies of the effective-
ness of machine learning classifiers. A key open challenge is
the lack of large-scale studies that use hundreds or thousands of
mobile malware samples to analyze the effectiveness of well-
known machine learning algorithms. To focus research and
understand the effectiveness of current algorithms, studies are
needed that provide empirical results from large-scale experi-
ments. Key challenges include acquiring thousands of malware
samples, orchestrating the install→profile→clean cycle, and
training the machine learning classifiers.

Contribution ⇒ A large-scale study of malware clas-
sifiers and a distributed mobile malware experimentation
platform.

To fill this gap in research on large-scale evaluations of
machine learning algorithms for mobile malware detection, we
present results from studying 6 machine learning classifiers
on 1330 malicious and 408 benign applications, for a total
of 1738 unique applications. By sending a large amount of
emulated user input to each application, we collected 6,832
feature vectors. We analyzed classifier performance with cross
validation (e.g. analysis performed on applications in the
training set) and with true testing (e.g. analysis performed on
applications not in the training set). Although cross validation
frequently implies better malware classifier performance (e.g.
is biased), it is used in many dynamic malware papers and
therefore included here for comparison to prior results. The
empirical results provide an initial roadmap for researchers
selecting machine learning algorithms for mobile malware
classification and a resource for validating the improvements
of new malware classification approaches. Our results show
that Logistic and Bayes net malware classifiers perform the
worst and best respectively at detecting malware. Moreover,
our datasets, empirical results, and distributed experimentation
infrastructure are available in opensource form.

In addition to this study, we present the design of the
distributed mobile malware experimentation framework that
we created to profile applications and study malware clas-
sifiers: STREAM, a System for Automatically Training and
Evaluating Android Malware Classifiers. STREAM is a feature
vector collection framework that distributes collection to a
cloud of Android devices or emulators. The feature vectors
collected are generic and can be tuned to the needs of the
user. The framework was designed to be configurable, allowing

978-1-4673-2480-9/13/$31.00 ©2013 IEEE 1666

future researchers to reuse our automation framework instead
of creating their own.

The remainder of this paper is organized as follows:
Section II discusses the challenges faced during this study and
while creating the framework; Section III covers STREAM, a
rapid feature vector collection framework; Section IV presents
empirical results from the study; and Section VI presents
concluding remarks and lessons learned.

II. CHALLENGES OF EVALUATING MOBILE MALWARE

CLASSIFIERS

While malware classifiers have the potential to detect
and proactively prevent the spread of malware on mobile
devices, there are a number of challenges to determining which
techniques are most effective at detecting malware. A critical
challenge is the need for the collection and experimentation
with a large dataset for training malware classifiers, typically
spanning hundreds of applications and thousands of feature
vectors. These datasets can be difficult to collect accurately,
as there is an inherent tradeoff between profiling malware
operating maliciously, such as gaining network access on a
mobile device, and ensuring that both the malware remains
within its sandbox and the malware profile remains accurate.
Moreover, malware classifiers must be trained and evaluated
in a repeatable and consistent manner with large-scale exper-
imentation and automation infrastructure.

A. Challenge 1: Collecting Large Feature-Vector Datasets
from Mobile Devices

Profiling 1,000s of applications on Android devices and
emulators is commonly done in 2 ways: collecting crowd-
sourced data and traces from real user interaction, or em-
ulating user interaction via fuzz testing. Crowdsourcing is
advantageous to well-established malware detection methods
due to the amount of real data acquired. However, crowd-
sourcing leads to privacy concerns, data limitations, and non-
repeatability. Emulation is advantageous to experimental mal-
ware detection methods, as in our study.

Emulation is difficult due to the complex set up, manage-
ment, and tear down process required. Automatic solutions are
needed to install the APK to the device; start the application;
simulate user interaction while collecting feature vectors; unin-
stall the application; keep track of the feature vectors; and train
and test the classifiers. Our experiment applies these 7 steps
to each application in our set of 1,738 applications, requiring
over 12,000 total steps. If we had executed all steps in serial
on one mobile device, it would require around seven days to
complete execution.

While user input is being emulated on an application,
feature vectors need to be collected. These will later be used
to train the machine learning algorithms to detect feature
usage indicative of malware. An effective malware classifier
needs to continuously add new applications to the data set and
profile them. As shown above, completing profiling in a timely
manner is a key challenge to keeping malware classifiers up
to date. Section III-A describes how our framework directly
addresses this challenge via STREAM, a collection of automa-
tion approaches that address the aforementioned issues of APK
installation, user input generation, feature vector collection,
and malware classification.

B. Challenge 2: Accurately Collecting Malware Profiling Data
on Mobile Devices

Android malware can cause privilege escalation, remote
control, financial charges, and personal information stealing
[5]. Sandboxing can prevent certain malware behavior, and
therefore data collection must allow malware to both execute
and control inherent safety issues. These issues can be local
and affect a device, or remote and affect the network the device
is attached to. This leads to a trade–off between malware
execution and malware isolation. Locally, devices need to be
constantly refreshed so malware won’t be able to access data
on the devices. Devices need to be exclusively designated for
malware analysis and cannot contain any sensitive information.

For example, when profiling a malicious application, it
is possible the malware can escape its sandbox and harm
its surroundings. In our early experimentation, we improperly
sandboxed device network traffic and leaked malicious traffic.
The Virginia Tech IT Security Office detected this traffic
and notified us of a malware infestation. For any cloud of
devices allocated to run malware analysis, caution needs to
be taken to prevent the devices from attempting to exploit
computers connected to the cloud servers. We address the
security concerns in Section III-B by discussing how we
sandbox both applications and devices, only allow one malware
to run per allocated device, and completely reformat a device
between different tests.

III. A FRAMEWORK FOR DISTRIBUTED APPLICATION

PROFILING

Fig. 1. High-level overview of STREAM distributed across multiple nodes.

STREAM, a System for automatically TRaining and Eval-
uating Android Malware classifiers, addresses the challenges
discussed in Section II and provides an effective method
of rapidly profiling malware and training machine learning
classifiers. STREAM can run on a single server or distributed
across a grid of remote servers. Figure 1 shows a high–
level operational overview of STREAM. The master server
distributes profiling jobs to the worker nodes.The node servers
then distribute the jobs between devices or emulators in par-
allel. Inside each device or emulator, STREAM manages the
applications, drives the feature vector collection, and manages
classifier training and evaluation. The parallelization addresses
the size of the problem domain and the STREAM framework
provides a combination of accuracy and scalability.

1667

A. STREAM Implementation Details

A primary challenge of effective mobile malware profiling,
as described in Section II-A, is automating the process of
infecting devices, generating realistic user input and test data
to trigger malicious behavior, orchestrating the collection of
this malware data from hundreds or thousands of devices, and
continually training a large set of classifiers to measure mal-
ware classification performance. STREAM is an automation
framework that addresses this challenge by infecting Android
devices with app-based malware and simulating user-input to
trigger malicious activity. STREAM manages the temporal
synchronization of these activities, harvesting the output data,
and training the malware classifiers. More broadly, STREAM
is a framework for automating and synchronizing actions on
Android emulators across tens of machines and thousands of
emulators in tandem.

1) Test Platform: Infecting thousands of real physical de-
vices is not feasible for most organizations. STREAM lever-
ages the Android emulator as an option for its testing platform,
enabling testing at scales impossible with physical devices.

2) Load Distribution Locally and Remotely: Running an
emulator and collecting feature vectors in real-time is both time
and memory intensive. Profiling an application for 5 minutes
with a single emulator can require over 1GB of memory and
100% utilization on one core. STREAM can automatically
manage running multiple emulators on both local and remote
systems.

3) Device Preparation: STREAM prepares a device by
configuring settings, creating an entire user persona, and
installing any applications required for malware detection.

4) Device Infection: Drawing from a database of known
malicious and benign applications obtained from the Malware
Genome Project [5], VirusTotal Malware Intelligence Service
[6], and Google Play, STREAM installs each application onto
a device.

5) User Input Emulation: A critical component of mul-
tiple malware applications is user input. It is common for
a malicious application, such as variants of AnserverBot or
GGTracker, to inject its payload after a user approves an action.
STREAM simulates this user input by invoking Android’s
Monkey, which sends a random stream of events to an appli-
cation, while profiling applications. While Monkey generates
acceptable data, it will not be as accurate as other, more
sophisticated methods of generating input to test applications,
such as crowdsourcing [7] and analysis-based fuzz testing [8].
Future work to STREAM will add a more robust and accurate
method of generating user input.

6) Malware Execution Monitoring & Feature Vector Col-
lection: While our experiments collected a set of feature
vectors chosen for their use in prior work [9], future malware
detection may require collection of different features. To sup-
port this, STREAM includes a modifiable Android application
to give the researcher control over the contents of each feature
vector. In our experimentation, we collect information about
the battery, binder, memory, network, and permissions.

B. Enabling Accurate Malware Profiling with STREAM

It is necessary to balance unrestricted malware operation
and security concerns arising from running malware. An obvi-
ous sandbox definition is the Android emulator, and therefore
STREAM ensures application profile isolation by formatting
an Android emulator after profiling. However, to avoid allow-
ing malware testing to escape the sandbox, STREAM disables
networking access. Networking has been shown to be a critical
feature of some malware, such as botnets, and therefore future
work in this area will explore allowing access to a controlled
environment [5].

C. Results Management, Analysis, & Visualization.

Feature vector and classifier evaluation results are pre-
sented to users. This output is provided in ARFF format, which
can be read into the Weka testing suite [10]. Weka provides
capabilities to train and evaluate malware classifiers given
feature vectors, and provides implemenatations of numerous
popular machine learning algorithms. We use the random forest
[11], naive Bayes [12], multilayer perceptron [13], Bayes net
[14], logistic [15], and J48 [16] classifiers. These classifiers
were chosen due to their use in similar research papers [9].
STREAM outputs the performance of the classifiers on all
of the feature vectors and the feature vectors from each
application individually. In addition to STREAM’s output,
Weka can be used manually to visualize the feature vectors
from the ARFF files. For example, Figure 2 shows Weka charts
for various feature vectors. Other features of Weka include
preprocessing, clustering, and attribute selection algorithms on
the data sets.

Fig. 2. Histograms created by Weka.

IV. EMPIRICAL RESULTS

We present a study of the effectiveness of various malware
classifiers trained and testing using STREAM. A data set of
applications for training and testing were gathered from the
Malware Genome Project [5], VirusTotal Malware Intelligence
Service [6], and Google Play. The training set consists of 1738
applications (1330 malicious and 408 benign) and the testing
set consists of 47 applications (24 benign and 23 malicious).
There are 8 applications duplicated across both data sets, for
a total of 1777 unique applications.

A. Experimental Platform

STREAM resides on the Android Tactical Application
Assessment & Knowledge (ATAACK) Cloud [17], which is
a hardware platform designed to provide a testbed for cloud–
based analysis of mobile applications. The ATAACK cloud
currently uses a 34 node cluster, with each cluster machine
containing Dell PowerEdge M610 blade running CentOS 6.3.

1668

Each node has 2 Intel Xeon 5645 R© processors with 12 cores
each along with 36GB of DDR3 ECC memory.

In addition to this hardware platform, Samsung Nexus S
devices are attached to the ATAACK Cloud to demonstrate
the results of the framework when run on Android devices
rather than emulators. These devices run a userdebug build
of Android 4.0.4 r2.1, and the emulators are created with
Google’s SDK and Android 4.1.1.

B. Experiment 1: Malware Classifier Performance Across the
Combined Data Set

Feature Vectors

binderActiveTransactionComplete
binderTotalTransactionComplete

binderTotalTransactionDiff
binderTotalTransactionCompleteDiff

battIsCharging battVoltage
battTemp battLevel
battLevelDiff binderTransaction
binderReply binderAcquire
binderRelease binderActiveNodes
binderTotalNodes binderActiveRef
binderTotalRef binderActiveDeath
binderTotalDeath binderActiveTransaction
binderTotalTransaction binderTotalNodesDiff
binderTotalRefDiff binderTotalDeathDiff
cpuUser cpuSystem
cpuIdle cpuOther
memActive memInactive
memMapped memFreePages
memAnonPages memFilePages
memDirtyPages memWritebackPages
permissions

TABLE I. FEATURE VECTORS COLLECTED WITH APPLICATION

PROFILING

Term Abbr. Definition

True Positive TP Malicious app classified as malicious
True Negative TN Benign app classified as benign
False Negative FN Malicious app classified as benign
False Positive FP Benign app classified as malicious

True Positive Rate TPR TP/(TP + FN)
False Positive Rate FPR FP/(FP + TN)
Correctly Classified Total number of correctly classified instances

from the testing dataset
TABLE II. DEFINITIONS FOR THE PRESENTED RESULTS

We used STREAM to send 10,000 input events to each
application in the data set and collect a feature vector every
5 seconds. We collected over thirty features in each vector, as
shown in Table I. Feature vectors collected from the training
set of applications were used to create classifiers, and then
feature vectors from the testing set are used to evaluate the
created malware classifiers. Classification rates from the testing
set are based on the 47 testing applications used. Future work
includes increasing the testing set size to increase confidence
in these results.

Table II shows descriptions of the metrics used to evaluate
classifiers. The overall results of training and testing six
machine learning algorithms with STREAM are shown in
Table III. There is a clear difference in correct classification
percentage of the cross validation set (made up of applications
used in training) versus the testing set (made up of applications
never used in training). Feature vectors from the training set are
classified quite well, typically over 85% correct, whereas new
feature vectors from the testing set are often only classified
70% correctly. Classifier performance cannot be based on cross
validation solely, as it is prone to inflated accuracy results.

When evaluating the classifiers on the testing set, which is
a more realistic evaluation of classifier performance, Table III
reveals Bayes’ classifiers have a higher classification rate than
other tested classifiers. Bayes net correctly classifies 81.25%
of feature vectors, while the Naive Bayes classifier correctly
classifies 78.91% of feature vectors. The Bayes’ classifiers also
reveal a distinction in the corresponding rates. The TPR of the
Bayes’ algorithms are 95.50% and 97.30%, while the TPR

of the other algorithms range from 48.65% to 72.97%. The
lower FPR rates of the other algorithms reveal the tradeoff.
While the Bayes’ algorithms tend to more accurately detect
malware, the other algorithms tend to more accurately detect
benign applications. Due to the high classification rate and high
TPR of the Bayes net classifier, Section IV-C further analyzes
the results from Bayes net on the specific applications from
the testing set.

C. Experiment 2: Bayesian network Classifier Performance
Across Individual Applications

This experiment uses the same sets of training and testing
feature vectors from Section IV-B, but focuses on the perfor-
mance of the Bayesian network classifier on individual feature
vectors. While feature vectors from the testing set (i.e. unseen
applications) were the focus, some feature vectors were from
the training set and are marked as duplicated.

Table IV shows high detection rates for malicious ap-
plications. 86.36% of malicious applications were correctly
classified with a 100.00% detection rate. Of these, all seven
duplicated applications (e.g. included in the training set) all
yielded 100.00% detection rates. Alternatively, only 52% of the
benign applications were correctly classified with 100.00%. In
addition, 17.39% of benign applications were classified with a
0.00% detection rate. These results would be unacceptable in a
production program because the user would constantly receive
false positive alerts claiming benign applications are malicious.
Future work will explore ways of increasing detection rates by
varying the features in the feature vectors, fuzz testing, and
adding more applications to the data sets. Moreover, future
work should directly examine potential sources of error, such
as chosen features or emulated user behavior, and take steps
to quantify the confidence in classifier analysis.

D. Analysis of Results

Our results in testing these classifiers show detection
rates from 68.75% to 81.25%, representative of real data the
classifiers will process in production. The evaluation time is
comparable across on the testing set all classifiers, ranging
from 0.261s to 0.728s. In addition to this, Table III shows
the file sizes of the models can reasonably reside on a
mobile device. The largest classifiers are Bayes net (2.7M)
and multilayer perceptron (2.7M).

All of our results are based upon using the Android
monkey user input tool, which lowers confidence that results
are identical to real user input. Future work aims to incorporate
advanced fuzz testing techniques from Mahmood et al. [8]
to more accurately simulate user input. During our initial
experimentation, our classifiers performed similar to random
classification (50%) because few events with a delay were used
to profile the applications to simulate real user input. We obtain

1669

Model Cross Validation Testing Set

Classifier Size Correctly Classified TPR FPR Correctly Classified TPR FPR Time

Random Forest 804K 94.53% 97.66% 14.85% 70.31% 66.67% 26.90% 0m 0.647s
Naive Bayes 17K 79.79% 87.85% 44.36% 78.91% 95.50% 33.79% 0m 0.261s

Multilayer Perceptron 2.7M 93.91% 97.27% 16.13% 70.31% 61.26% 22.76% 0m 0.728s
Bayes net 2.7M 86.23% 93.95% 36.88% 81.25% 97.30% 31.03% 0m 0.685s
Logistic 27K 89.52% 97.07% 33.08% 68.75% 48.65% 15.86% 0m 0.268s

J48 77K 93.43% 96.09% 14.55% 73.44% 72.97% 26.21% 0m 0.320s
TABLE III. RESULTS FROM MACHINE LEARNING CLASSIFIERS WITH 6,832 TRAINING FEATURE VECTORS EVALUATED WITH 10-FOLD CROSS

VALIDATION AND AGAINST A TESTING SET OF 256 FEATURE VECTORS.

Benign Applications

Name Correct % Name Correct %

quiz.companies.game 66.67% bbc.mobile.news.ww* 25.00%
battery.free 100.00% mycalendarmobile 25.00%
android.reader 100.00% imdb 100.00%
papajohns 0.00% pinterest 25.00%
androidPlayer 100.00% craigslistfree 0.00%
pregnancytracker 100.00% hydra 100.00%
stylem.wallpapers 0.00% bfs.ninjump 100.00%
templerun 100.00% tumblr 0.00%
airpushdetector 100.00% OMatic 0.00%
unveil 16.67% box 100.00%
mahjong 100.00% gtask 0.00%
songkick 100.00%

Malicious Applications

Name Correct % Name Correct %

Beauty.Girl* 100.00% Ipad2App 100.00%
XrayScanner 85.71% ad.notify1 100.00%
mymovies 100.00% gone60* 100.00%
CallOfDuty 94.12% skyscanner 100.00%
DWBeta* 100.00% antimosquitos 100.00%
android.installer 75.00% sipphone* 100.00%
txthej* 100.00% rommanager 100.00%
bowlingtime* 100.00% paintpro* 100.00%
barcode 100.00% zanti 100.00%
luckjesusblessings 100.00% youLoveLiveWallpaper 100.00%
topGear 100.00% fingerprint 100.00%

TABLE IV. PERFORMANCE OF THE BAYES NET CLASSIFIER ON INDIVIDUAL APPLICATIONS. *Duplicated applications

the current results by removing the delay between events and
increasing the number of events from 1,500 to 10,000.

V. RELATED WORK

STREAM furthers the research in application profiling and
dynamic malware analysis by providing a practical framework
for existing methods to use. Dynamic malware analysis and
application profiling to collect dynamic feature vectors are
closely related. The malware detection and profiling methods
are often presented together for this reason. The following
provides an overview of current research in this area.

Dynamic malware analysis on the Android platform
Most work in dynamic malware analysis studies kernel-level
features. Much success has been reported from analyzing sys-
tem calls on the Android platform [18], [19]. Network traffic
is also a commonly analyzed feature for malware detection on
the Android platform [20], [21].

Andromaly by Shabtai et al. [9] takes a different approach
and analyzes higher level features obtainable from a user-
space application, such as SMS and call usage; networking
information; and power usage. Bente et al. [22] present similar
features to Andromaly and add context and trust information.
Kim et al. [23] monitor similar features on a mobile cloud
infrastructure. Dini et al. [24] monitor similar features in
addition to system calls.

Our work furthers the study of the feature vector collection
methodology proposed by Shabtai et al. [9]. Most of the related
work show advancements in technique, but not in scalability.
Shabtai et al. use 40 benign applications and create 4 malicious
applications for experimentation. Kim et al. use the GoldMiner
malware variants to provide abnormal data. Dini et al. use 56
benign and 10 malicious applications for experimentation.

Application profiling for malware analysis Research in
malware detection is correlated to application profiling to
simulate realistic user input and trigger malicious activity.
Crowdroid [7] collects behavioral–related data directly from
users via croudsourcing and evaluates the data with a clustering

algorithm. Mahmood et al. [8] combines fuzz testing with a
framework to collect data in parallel on emulators. TaintDroid
[25] presents a lightweight method to monitor the flow of
sensitive data and detect anomalies. pBMDS [18] correlates
user input to system calls at runtime. SmartDroid [26] com-
bines dynamic analysis with static analysis to explore user
interaction and malware trigger conditions.

STREAM implements the random fuzz testing provided by
Android’s monkey. Implementing a more sophisticated method
of this testing is left for future work.

Android malware analysis frameworks and studies
Similar frameworks to STREAM have been proposed. Bläsing
et al. [27] present a sandbox to profile applications for static
and dynamic analysis, but show no empirical results. Zhou et
al. [28] evaluate 204,040 applications both statically (using
Android permissions) and dynamically using Android API
method calls, but do not consider application resource usage.
Zheng et al. [26] analyzed 150,368 using a dynamic analysis
approach based off of user-interface monitoring.

STREAM implements a dynamic analysis framework sim-
ilar to the work by Bläsing and we present a study on 1,738
applications. The techniques used by Zhou and Zheng do
not profile applications as discussed here. We are currently
working on integrating a larger number of applications from
Google Play into our datasets.

Android’s Bouncer Android’s Bouncer [29] provides auto-
mated scanning combined with static and dynamic analysis of
applications submitted to Google Play. While it has decreased
the number of malicious applications on Google Play, having
an open platform for research in addition to this provides
numerous benefits. 1) Researchers can share data and analysis
techniques; 2) Antimalware vendors can benefit from the
additional data; and 3) Antimalware studies based on dynamic
analysis become more accessible to the research and corporate
communities. Further, research by Oberheide and Miller [30]
show numerous ways of circumventing Android’s bouncer.

1670

VI. CONCLUDING REMARKS & LESSONS LEARNED

An important gap in research on dynamic mobile mal-
ware collection is a study of machine learning algorithm
performance on mobile malware detection. A number of new
malware detection approaches have been proposed, but without
experimental baselines for comparison, determining what algo-
rithms to start with when developing new techniques and how
to validate those algorithms is hard. This paper presents results
demonstrating the effectiveness of different machine learning
classifiers in correctly classifying an arbitrary application as
malware. Commonly used machine learning algorithms, such
as multilayer perceptron and random forest, don’t perform
well. All of the classifiers, even Bayes net, which correctly
classifies the highest percentage of feature vectors, had poor
false positive rates, ranging from 15.86% to 33.79% in the
testing set.

From our experiments with malware classifiers, we learned
the following important lessons: 1) results from cross valida-
tion, which are heavily used in the literature due to a lack
of malware samples, are not consistent with results from real
testing and over-estimate performance 2) Machine-invariant
features should be explored in future work, as feature vectors
can vary drastically from one platform to the next. 3) While
our malware set was large relative to prior studies, future work
aims to download a large database of applications from Google
Play and run a much larger benchmark.

This work is available under the IWCMC-2013 tag at
https://github.com/VT-Magnum-Research/antimalware.

REFERENCES

[1] “Android Marks Fourth Anniversary Since Launch with 75.0% Market
Share in Third Quarter, According to IDC,” URL http://www.idc.com/
getdoc.jsp?containerId=prUS23771812, 2012.

[2] “Google Says 700,000 Applications Available for An-
droid,” URL http://www.businessweek.com/news/2012-10-29/
google-says-700-000-applications-available-for-android-devices,
2012.

[3] N. Idika and A. P. Mathur, “A survey of malware detection techniques,”
Purdue University, p. 48, 2007.

[4] “Malware Detection Methods,” URL http://www.avg.com/us-en/
avg-software-technology.

[5] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization
and Evolution,” in Security and Privacy (SP), 2012 IEEE Symposium

on, May 2012, pp. 95 –109.

[6] “VirusTotal Malware Intelligence Services,” URL https://secure.vt-mis.
com/vtmis/.

[7] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-
based malware detection system for android,” in Proceedings of the 1st

ACM workshop on Security and privacy in smartphones and mobile

devices, ser. SPSM ’11. New York, NY, USA: ACM, 2011, pp. 15–26.
[Online]. Available: http://doi.acm.org/10.1145/2046614.2046619

[8] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and
A. Stavrou, “A whitebox approach for automated security testing of
Android applications on the cloud,” in Automation of Software Test

(AST), 2012 7th International Workshop on, June 2012, pp. 22 –28.

[9] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,
““Andromaly”: a behavioral malware detection framework for android
devices,” Journal of Intelligent Information Systems, vol. 38, pp.
161–190, 2012, 10.1007/s10844-010-0148-x. [Online]. Available:
http://dx.doi.org/10.1007/s10844-010-0148-x

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,” SIGKDD

Explor. Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009. [Online].
Available: http://doi.acm.org/10.1145/1656274.1656278

[11] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[12] P. Domingos and M. Pazzani, “On the optimality of the simple bayesian
classifier under zero-one loss,” Machine learning, vol. 29, no. 2, pp.
103–130, 1997.

[13] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory
of brain mechanisms,” DTIC Document, Tech. Rep., 1961.

[14] R. R. Bouckaert, “Bayesian network classifiers in weka for version 3-
5-6.”

[15] D. Hosmer and S. Lemeshow, “Logistic regression for matched case-
control studies,” Applied logistic regression, vol. 2, pp. 223–259, 1989.

[16] J. R. Quinlan, C4. 5: programs for machine learning. Morgan
kaufmann, 1993, vol. 1.

[17] H. Turner, J. White, J. Reed, J. Galindo, A. Porter, M. Marathe, A. Vul-
likanti, and A. Gokhale, “Building a cloud-based mobile application
testbed,” Software Testing in the Cloud: Perspectives on an Emerging

Discipline, Nov 2012.

[18] L. Xie, X. Zhang, J. Seifert, and S. Zhu, “pbmds: a behavior-based
malware detection system for cellphone devices,” in Proceedings of the

third ACM conference on Wireless network security. ACM, 2010, pp.
37–48.

[19] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior anal-
ysis for android malware detection,” in Computational Intelligence and

Security (CIS), 2011 Seventh International Conference on. IEEE, 2011,
pp. 1011–1015.

[20] T. Wei, C. Mao, A. Jeng, H. Lee, H. Wang, and D. Wu, “Android
malware detection via a latent network behavior analysis,” in Trust,

Security and Privacy in Computing and Communications (TrustCom),

2012 IEEE 11th International Conference on. IEEE, 2012, pp. 1251–
1258.

[21] J. Cucurull, S. Nadjm-Tehrani, and M. Raciti, “Modular anomaly
detection for smartphone ad hoc communication,” Information Security

Technology for Applications, pp. 65–81, 2012.

[22] I. Bente, B. Hellmann, J. Vieweg, J. von Helden, and G. Dreo, “Tcads:
Trustworthy, context-related anomaly detection for smartphones,” in
Network-Based Information Systems (NBiS), 2012 15th International

Conference on. IEEE, 2012, pp. 247–254.

[23] T. Kim, Y. Choi, S. Han, J. Chung, J. Hyun, J. Li, and J. Hong, “Moni-
toring and detecting abnormal behavior in mobile cloud infrastructure,”
in Network Operations and Management Symposium (NOMS), 2012

IEEE. IEEE, 2012, pp. 1303–1310.

[24] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra, “Madam: a multi-
level anomaly detector for android malware.”

[25] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th

USENIX conference on Operating systems design and implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
1–6. [Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.
1924971

[26] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: an automatic system for revealing ui-based trigger conditions in
android applications,” in Proceedings of the second ACM workshop on

Security and privacy in smartphones and mobile devices. ACM, 2012,
pp. 93–104.

[27] T. Blasing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak,
“An android application sandbox system for suspicious software de-
tection,” in Malicious and Unwanted Software (MALWARE), 2010 5th

International Conference on. IEEE, 2010, pp. 55–62.

[28] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets,” in Proc. of the 19th Annual Network and Distributed System

Security Symposium (NDSS), 2012.

[29] “Android and Security,” URL http://googlemobile.blogspot.com/2012/
02/android-and-security.html, 2012.

[30] J. Oberheide and C. Miller, “Dissecting the android bouncer.” Sum-
merCon 2012, 2012.

1671

