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INTRO: REAL-WORLD MODELING CONTRIBUTIONS

Computers are used to model complex systems in domains such as biology, physics, and neuroscience. Fortran implementation.

Real-world phenomena may have random, or stochastic, elements that need to be included in the model. e Matlab was well-suited for prototyping, but is not as suitable for high-end computing as Fortran.
Finding optimal parameters to these models provides turther insight into the problems. e Modern state of the art mathematical software and real-world models are still implemented in Fortran.
For example, when designing an airplane, there are many design alternatives resulting in different perfor- e Fortran is faster and uses less resources than Matlab.

mances and costs, and design process optimization helps minimize cost and maximize performance. e Fortran provides robust parallelization environments: OpenMP and MPI.

(GRIEWANK TEST FUNCTION

e The Griewank function is used to test optimiza-
tion algorithms and is defined by
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THE QNSTOP ALGORITHM

e Provides global and stochastic modes.

(QUADRATIC DUAL FUNCTION

STOCHASTIC OPTIMIZATION

e These models can be represented as a mathemat-
ical function with which a minimum or max-
imum value needs to be found.

e These functions can contain hundreds or thou-
sands of input values and take minutes to reach a

e Nonconvex and nonsmooth 57-dimensional un-
constrained minimization problem.
e Kxact solution of -1866.01.

e Objective function has the form

(Global optimization in each iteration k.
e Update design and trust region radius 7

e In each iteration £ > 0, QNSTOP samples N
points from an experimental design region (ellip-

fmal outcome, a single Valu.e, and therefor.e, SOI\/.'— soid) Ej, in RP centered at &, with radius 7. O(o) = 1 +T _ Z £ 4+ (BT o),
ing these functions analytically can be infeasi- e Obtain a semilocal quadratic approximation 2 — | for d > 0. A contour plot is shown below.
ble. e Global minimum: f(0) = 0.

where o, B, and f are defined in [1].

e Plot shows the best value QNSTOP finds f(&x)
in each iteration k.

e Plot shows the points sampled by QNSTOP from
a Latin hypercube as dots and the lines show QN-
STOP progression in each iteration.
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¢ Random sampling to find the optimal value is in-
feasible because the set of feasible values can take
years to exhaust.

e Optimization algorithms are used to approxi-
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formation rather than requiring the user to pro-
vide derivative information.
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e Complex computer models and simulations are
difficult to obtain derivative information from, where ©® C RP is the feasible set.
and quasi-Newton methods provide a reasonable e Update the scaling matrix
estimate.
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QNSTOP MOTIVATION

There are many existing approaches to stochastic
optimization. 2 iterative methods are:

— Stochastic approximation (SA). Large
numbers of crude, inexpensive iterations.
Linear approximations of the function con-
structed by coarse finite differencing.

— Response surface methodology
(RSM). Small numbers of carefully
planned, expensive iterations. Linear and
quadratic approximations of the function
constructed by regression experiments.

QNSTOP is proposed in Brent Castle’s PhD dis-

sertation at Indiana University in 2012 and com-
bines ideas from SA and RSM.
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Stochastic optimization.
e Similar structure to global optimization.
e Use different updates for 7, Hi, and uz better

suited to stochastic optimization.
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